|
|
вернуться в форумVery interesting problem (+) ...And not as difficult as it seems to be. My program on Pascal gets AC within 0.796 sec without complicated optimizations and even without sorting, grouping, ets. Just some good precalc ideas realized properly :) Re: Very interesting problem (+) Dima, I better 901327 21:51:38 21 авг 2005 Anatoliy 'Tolyan_NO' Tolstobroff 1318 Pascal Accepted 0.687 281 КБ Not use binaru searching use O(39), but cleaver. Re: Very interesting problem (+) Послано GaLL 31 авг 2005 22:50 My solution uses additional array [65536] that helps to calculate int(log2()) of 16-bit numbers faster. GaLL 1318 C++ Accepted 0.406 314 КБ Re: Very interesting problem (+) Optimized binary searching: no extras comparisons, no cycles 6 comparisons only !!! int Find( Tm_LargeNumber<> &n ) { if (n < Pow[16]) if (n < Pow[8]) if (n < Pow[4]) if (n < Pow[2]) if (n < Pow[1]) return 0; else return 1; else if (n < Pow[3]) return 2; else return 3; else if (n < Pow[6]) if (n < Pow[5]) return 4; else return 5; else if (n < Pow[7]) return 6; else return 7; else if (n < Pow[12]) if (n < Pow[10]) if (n < Pow[9]) return 8; else return 9; else if (n < Pow[11]) return 10; else return 11; else if (n < Pow[14]) if (n < Pow[13]) return 12; else return 13; else if (n < Pow[15]) return 14; else return 15; else if (n < Pow[32]) if (n < Pow[24]) if (n < Pow[20]) if (n < Pow[18]) if (n < Pow[17]) return 16; else return 17; else if (n < Pow[19]) return 18; else return 19; else if (n < Pow[22]) if (n < Pow[21]) return 20; else return 21; else if (n < Pow[23]) return 22; else return 23; else if (n < Pow[28]) if (n < Pow[26]) if (n < Pow[25]) return 24; else return 25; else if (n < Pow[27]) return 26; else return 27; else if (n < Pow[30]) if (n < Pow[29]) return 28; else return 29; else if (n < Pow[31]) return 30; else return 31; else if (n < Pow[36]) if (n < Pow[34]) if (n < Pow[33]) return 32; else return 33; else if (n < Pow[35]) return 34; else return 35; else if (n < Pow[37]) return 36; else if (n < Pow[38]) return 37; else return 38; } Re: Very interesting problem (+) I think it's much more interesting to find O(n) solution. It is really beautiful. |
|
|