| 
 | 
вернуться в форумmy AC solution is very simple Послано  sahand 1 мар 2008 22:49 Hello guys in this problem we have n equation with n unknown than solved with Gause-Jordan modification a0 a1 a2 a3 a4 a5 .... an if a1=(a0+a2)/2 - c0 then 2a1 - a2 = a0- 2c0 if a2=(a1+a3)/2 - c1 then -a1 +2a2 - a3= -2c1 .... 2a1 - a2     = a0- 2c1 -a1 +2a2 - a3= -2c2 -a2 +2a3 - a4= -2c3 -a3 +2a4 - a5= -2c4 .... -an +2an-1 - an+1 = -2cn e.g for n=5: 2  -1   0   0   0   a0-2c1 -1  2   -1  0   0   -2c2 0   -1  2   -1  0   -2c3 0   0   -1  2   -1  -2c4 0   0   0   -1  2   a6-2c5 and now you must solve the top diagonal "-1" of matirs ( start of last row)and finish. the order is O(n) sudo code is: m[0 ... n] a=2; while(--n){  f= 1/a;  m[n-1]= m[n-1]+ f*m[n];  a = 2-f; } cout<< m[0]/a ;
    Edited by author 01.03.2008 22:56 Re: my AC solution is very simple I did the same stuff in my solution, but I used Cramer's rule to calculate the answer. I used recurrent sequence for calculating determinants. Final complexity is O(n), but the it is easily can be calculated in O(logn).  |  
  | 
|