ENG  RUSTimus Online Judge
Online Judge
Задачи
Авторы
Соревнования
О системе
Часто задаваемые вопросы
Новости сайта
Форум
Ссылки
Архив задач
Отправить на проверку
Состояние проверки
Руководство
Регистрация
Исправить данные
Рейтинг авторов
Текущее соревнование
Расписание
Прошедшие соревнования
Правила
вернуться в форум

Обсуждение задачи 1382. Игра с карточками

some tests
Послано Roks 24 янв 2009 20:23
4
2 4 3
2 4 4
2 1 1
2 3 4
// 2 1 2 2


4
3 2 1
2 1 1
4 4 4
2 3 1
// 1 1 2 2

2
2 2 2
1 1 1
// 1 1


3
1 2 1
2 3 2
3 1 3
// 1 1 1

Edited by author 24.01.2009 20:24
Re: some tests
Послано SkorKNURE 24 янв 2009 20:24
Hint:
Try to build bipartite graph with 2*N edges. Then iteratively find vertice with only one connected edge. This edge will be "true" anyhow, so its pair from the guy's statement is "false". Also "false" are all edges, connected to both vertices of current one, and then you can mark their pairs as "true" ans so on...
Re: some tests
Послано svr 19 июн 2009 10:37
What residue graph after this procedure.
Can it have vertices with deg>2?
Logically it must be union of separeted edges(matched vertices) and disjoint circles. But My Ac prog
says that in 9 test residue graph has vertice with deg>2.

Edited by author 20.06.2009 09:17
Re: some tests
Послано Al.Cash 19 июн 2009 13:36
I'm not sure how do you build that "residue graph", but the answer is most likely to be "no"))
I would not mind helping you, but don't want to post ideas in forum.

Edited by author 19.06.2009 13:37
some other tests
Послано taobingxue 12 сен 2009 19:57
5
5 4 5
5 1 5
4 1 5
4 4 3
4 1 5

5
2 5 4
4 5 1
3 4 3
3 5 5
1 5 5

I hope they can help~
o(∩_∩)o...
Re: some other tests
Послано IGOR_Lviv NU 19 ноя 2009 17:28
Both of these tests are incorrect. My AC program fails on them.
Re: some other tests
Послано hoan 12 дек 2010 17:32
input:
6
1 2 4
2 3 5
3 1 6
1 5 4
5 6 5
6 4 6

output:
1 1 1 2 2 2

hope can help you.
GOOD LUCK!!!
Re: some tests
Послано Marshall Mathers 24 май 2011 19:18
Thank U but they're weak
Re: some tests
Послано NotImplemented 18 апр 2014 23:54
What if there is no such edge?