| 
 | 
вернуться в форум1s are located at (i-th Tri-angular number + 1)th position Number of zeros in bracket:  0     1     2      3      4 Sequence                  : (1)   (10)  (100)  (1000)  (10000) 1 is found at             : T0+1   T1+1  T3+1   T4+1    T5+1 Value of Ti+1             : 0+1    1+1   3+1    6+1     10+1   The i-th triangular number is the sum of the i natural numbers from 1 to i.   Ti = i(i+1)/2   i-th '1' is located at (Ti+1)-th position. Let, z = (Ti + 1) = (i(i+1)/2) + 1 -> z = (i^2 + i + 2)/2 -> 2z = i^2 + i + 2 -> (1)x(i^2) + (1)x(i^1) + (-2(z-1)x(i^0) = 0 So, now if we solve for i using quadratic formula,  i = (-1 +- squareRoot(8z-7))/2 [do calculation on your own] z = {1,2,4,7,11,...} plugin these values and you will find that squareRoot(8z-7) = an integersquare number for any z. So, a number belongs to z only and if only squareRoot(8z-7) can produce an integer. And here z is the position number where the digits are 1.   [code deleted]   Edited by author 24.12.2020 19:00   Edited by moderator 14.02.2021 18:16  |  
  | 
|