Re: recursion?
Послано
sloboz 7 апр 2004 03:47
there is a greedy solution but non-demonstrable: you start from some position and then you go to the position that has the fewest future possible moves...
here are the solutions that I've computed with this:
for n = 5, 6, 7 and 8;
N = 5:
"a1","b3","a5","c4","e5","d3","e1","c2","a3","b1","d2","e4","c5","a4","b2","d1","e3","d5","b4","a2","c1","e2","c3","b5","d4"
N = 6:
"a1","b3","a5","c6","e5","f3","e1","c2","a3","b1","d2","f1","e3","f5","d4","b5","d6","c4","b6","a4","b2","d1","f2","e4","f6","d5","c3","a2","b4","a6","c5","e6","f4","d3","c1","e2"
N = 7:
"a1","b3","a5","b7","d6","f7","g5","e6","g7","f5","e7","g6","f4","g2","e1","c2","a3","b1","d2","f1","g3","e2","g1","f3","d4","b5","a7","c6","b4","a2","c1","d3","b2","a4","b6","c4","e5","d7","c5","a6","c7","d5","c3","d1","e3","g4","f2","e4","f6"
N = 8:
"a1","b3","a5","b7","d8","f7","h8","g6","f8","h7","g5","h3","g1","e2","c1","a2","b4","a6","b8","c6","a7","c8","e7","g8","h6","g4","h2","f1","d2","b1","a3","c2","e1","f3","h4","g2","e3","d1","b2","a4","c3","b5","d4","f5","d6","c4","e5","d3","f2","h1","g3","e4","c5","d7","b6","a8","c7","d5","f4","e6","g7","e8","f6","h5"