Winter in Yekaterinburg is the longest time of the year. And everyone 
spends long winter evenings in his own way. A few days ago, Sergey found 
Her on the Internet. She is the girl of his dreams! Today he has invited 
Her on a date at a small cozy cafe on the crossroads of Marx street and 
Engels street.
Now Sergey goes to the cafe and he seems to be late. Sergey goes along 
Marx street, crosses it through a crosswalk, reaches the crossroads with 
Engels street, crosses it at traffic light and enters the cafe. There is 
no one inside — She has already gone. However, Sergey thinks not about 
catching up with her, but whether it was necessary to cross Marx street 
through the crosswalk. After all, he could reach the crossroads and cross 
both streets at the traffic light. And who knows, maybe in this case he 
would not have lost time in waiting for the green traffic light signal and 
could come in time. Which of these options is faster depends entirely on   
what point in time the right signal will light. To predict it in advance 
is impossible, but it is possible to estimate the probability.
Sergey always walks with a constant speed v and strictly follows the
traffic rules. So he starts to cross a street at the traffic light only 
when there is the green signal for him, but not yellow and especially not 
red. Starting to cross a street, Sergey do it with the same constant speed 
and without stops, regardless of the traffic light color change. The 
traffic light at the crossroads of Marx street and Engels street works  
as follows. For t1 seconds, there is a green signal for pedestrians 
crossing Engels street, and red signal for crossing Marx street. Then for 
t2 seconds there is a yellow signal for crossing Engels street and red 
signal for crossing Marx street. Then for t3 seconds there is a green 
signal for crossing Marx street and red signal for crossing Engels street.
Then for t4 seconds there is a yellow signal for crossing Marx street 
and red signal for crossing Engels street. Then everything is repeated.
Input
The first line contains an integer v that is the speed of Sergey (1 
≤ v ≤ 106). The second line contains integers d, w1 
and w2 that are the distance between the crosswalk and the crossroads, 
the width of Engels street and the width of Marx street respectively (1 
≤ d, w1, w2 ≤ 106). The third line contains integers 
t1, t2, t3 and t4, which describe the scheme of the traffic 
light (1 ≤ t1, t2, t3, t4 ≤ 106). It is guaranteed 
that w1 ≤ vt2 and w2 ≤ vt4. It can be assumed that 
drivers always give way to pedestrians at the crosswalk. All distances 
are given in meters, times in seconds and speed in meters per second.
Output
Output two numbers — the probability that at the equiprobable initial 
state of the traffic light Sergey would reach the cafe faster, crossing 
Marx street at the crosswalk, and the probability that he would reach 
faster, crossing both streets at the crossroads. Absolute error of your  
answer should not exceed 10−9. 
Sample
| input | output | 
|---|
| 1
10 1 1
4 1 4 1
 | 0.4 0.1
 | 
Problem Author: Egor Shchelkonogov
Problem Source: Open Ural FU Personal Contest 2014